BackgroundSubtractorMOG
MOG算法,即高斯混合模型分离算法,它使用一种通过K高斯分布的混合来对每个背景像素进行建模的方法(K = 3-5)
import numpy as npimport cv2import matplotlib.pyplot as pltcap = cv2.VideoCapture('test.mp4')fgbg = cv2.bgsegm.createBackgroundSubtractorMOG()while(1): ret, frame = cap.read() fgmask = fgbg.apply(frame) cv2.imshow('frame',fgmask) k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release()cv2.destroyAllWindows()
BackgroundSubtractorMOG2
MOG2算法,也是高斯混合模型分离算法,是MOG的改进算法,该算法的一个重要特征是 它为每个像素选择适当数量的高斯分布,它可以更好地适应不同场景的照明变化等.
import numpy as npimport cv2import matplotlib.pyplot as pltcap = cv2.VideoCapture('test.mp4')fgbg = cv2.createBackgroundSubtractorMOG2()while(1): ret, frame = cap.read() fgmask = fgbg.apply(frame) cv2.imshow('frame',fgmask) k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release()cv2.destroyAllWindows()
BackgroundSubtractorGMG
该算法结合统计背景图像估计和每像素贝叶斯分割,该算法使用前几个(默认为120)帧进行后台建模。它采用概率前景分割算法,使用贝叶斯推理识别可能的前景对象.在前几帧图像中会得到一个黑色窗口.
import numpy as npimport cv2import matplotlib.pyplot as pltcap = cv2.VideoCapture('test.mp4')kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))fgbg = cv2.bgsegm.createBackgroundSubtractorGMG()while(1): ret, frame = cap.read() fgmask = fgbg.apply(frame) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) cv2.imshow('frame',fgmask) k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release()cv2.destroyAllWindows()